Steps:
Solve by Matrix Inversion method:
x + y + z = 8
x - y + 2z = 6
3x + 5y - 7z = 14
Sol:
Writing these equation in matrix form:
+-- --+ +-- --+ +-- --+
| 2 1 1 | | x | | 8 |
| 1 -1 2 | | y | = | 6 |
| 3 5 -7 | | z | | 14 |
+-- --+ +-- --+ +-- --+
AX = B
+-- --+
| (7-10) -(-7-6) (5+3) |
Cofactor = | -(-7-5) (-7-3) -(5-3) |
| (2+1) -(2-1) (-1-1) |
+-- --+
+-- --+
| -3 13 8 |
Cofactor = | 12 -10 -2 |
| 3 -1 -2 |
+-- --+
Adj = Transpose of cofactor matrix
+-- --+
| -3 12 3 |
Adj A = | 13 -10 -1 |
| 8 -2 -2 |
+-- --+
Now finding |A|,
|A| = 1(7-10) -1(-7-6) +1(5+3)
|A| = 18
As X = A-1B
+-- --+ +-- --+
| -3 12 3 | | 8 |
X = | 13 -10 -1 | | 6 |
| 8 -2 -2 | | 14 |
+-- --+ +-- --+
+- -+
| 90 |
X = | 30 |
| 24 |
+- -+
+-- --+ +-- --+
| x | | 5 |
| y | = | 5/3 |
| z | | 4/3 |
+-- --+ +-- --+
Steps for Gauss Elimination
Solve the following equation by Gauss Elimination Method:
2x + y + 4z = 12
4x + 11y - z = 33
8x -3y + 2z = 20
Sol:
First we convert the above equation to augmented form (matrix)
+-- --+
| 2 1 4 : 12 |
| 4 11 -1 : 33 |
| 8 -3 2 : 20 |
+-- --+
pivot = 2
+-- --+
| 2 1 4 : 12 |
| 0 9 -9 : 9 |
| 8 -3 2 : 20 |
+-- --+
Pivot is still 2
+-- --+
| 2 1 4 : 12 |
| 0 9 -9 : 9 |
| 0 -7 -14 : -28 |
+-- --+
Now we want to set a32 to zero, and since we shifted towards the 2nd column, there will be a new
pivot.
+-- --+
| 2 1 4 : 12 |
| 0 9 -9 : 9 |
| 0 0 -21 : -21 |
+-- --+
Converting this back into equation form, we get:
Understanding formula using the following example:
y(x) = \(y_0\) + u▵\(y_0\) +
\(\frac{(u-1)u}{2!}\)▵2\(y_{-1}\) +
\(\frac{(u-1)u(u+1)}{3!}\)▵3\(y_{-1}\) +
\(\frac{(u-2)(u-1)u(u+1)}{4!}\)▵4\(y_{-2}\) +
\(\frac{(u-2)(u-1)u(u+1)(u+2)}{5!}\)▵5\(y_{-2}\) + ...
u = \(\frac{x - x_o}{h}\)
Q- Use Gauss's forward formula to find the value of y when x = 3.75 from the following table:
x | 2.5 | 3.0 | 3.5 | 4.0 | 4.5 | 5.0 |
y | 24.145 | 22.043 | 20.225 | 18.644 | 17.262 | 16.047 |
Sol:
x | y | △y | △^2 y | △^3 y | △^4 y | △^5 y
---------+-------------+----------------------------+----------------------------+-------------+-------------
2.5 | 24.145 | | | | |
| | 22.043-24.145= -2.102 (-2)| | | |
3.0 | 22.043 | | 0.284 (y-2) | | |
| | -1.818 (-1)| | -0.047 (y-2) | |
3.5 (x0) | 20.225 (y0)✮| | 0.237 (y-1)✮| | 0.009 (y-2)✮|
| | -1.581 (0)✮| | -0.038 (y-1)✮| | -0.003 (y-2)✮
4.0 | 18.644 | | 0.199 (y0) | | 0.006 (y-1) |
| | -1.382 (1)| | -0.032 (y0) | |
4.5 | 17.262 | | 0.167 (y1) | | |
| | -1.215 (2)| | | |
5.0 | 16.047 | | | | |
y(x) = 20.225 + 0.5(-1.581) +
\(\frac{(0.5-1)0.5}{2!}\) (0.237) +
\(\frac{(0.5-1)0.5(0.5+1)}{3!}\)(-0.038) +
\(\frac{(0.5-2)(0.5-1)0.5(0.5+1)}{4!}\)(0.009) +
\(\frac{(0.5-2)(0.5-1)0.5(0.5+1)(0.5+2)}{5!}\)(-0.003)
y(x) = \(y_o\) + u▵\(y_{-1}\) + \(\frac{u(u+1)}{2!}\)▵2\(y_{-1}\) +
\(\frac{(u-1)u(u+1)}{3!}\)▵3\(y_{-2}\) +
\(\frac{(u-1)u(u+1)(u+2)}{4!}\)▵4\(y_{-2}\) +
\(\frac{(u-2)(u-1)u(u+1)(u+2)}{5!}\)▵5\(y_{-3}\)
u = \(\frac{x - x_o}{h}\)
Q- Apply Gauss Backward formula to find the population of the town in 1946, given that
Year | 1931 | 1941 | 1951 | 1961 | 1971
Population | 15 | 20 | 27 | 39 | 52
(In thousands) |
u = \(\frac{x - x_o}{h}\)
x | y | △y | △^2 y | △^3 y | △^4 y |
---------+---------+----------+---------+----------+-----------+
1931 | 15 | | | | |
| | 5 (y-2)| | | |
1941 | 20 | | 2 (y-2) | | |
| | 7 (y-1)✮| | 3 (y-2)✮ | |
1951 (x0)| 27 (y0)✮| | 5 (y-1)✮| | -7 (y-2)✮ |
| | 12 (y0) | | -4 (y-1) | |
1961 | 39 | | 1 (y0) | | |
| | 13 (y1)| | | |
1971 | 52 | | | | |
y(x) = 27 + (-0.5)(7) + \(\frac{(-0.5)(-0.5+1)}{2!}\)(5) + \(\frac{(-0.5-1)(-0.5)(-0.5+1)}{3!}\)(3)
+ \(\frac{(-0.5-1)(-0.5)(-0.5+1)(-0.5+2)}{4!}\)(-7)
Reference