Meaning: The Sequencing problem involves determining an optimal order or sequence for performing a series of jobs across a number of facilities to minimize the total time or cost.
Types of Job Sequencing Problems:
Description: There are 9 jobs, each of which must be processed on Machine 1 and Machine 2 in a specific order (M1 → M2). The processing times in hours are as follows:
+------------------------------------------------------------------+
| Jobs: | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
+------------------------------------------------------------------+
| Machine 1: | 5 | 3 | 12 | 15 | 6 | 10 | 11 | 9 | 5 |
+------------------------------------------------------------------+
| Machine 2: | 6 | 8 | 10 | 10 | 6 | 12 | 1 | 3 | 7 |
+------------------------------------------------------------------+
Objective: Determine a sequence for these jobs that minimizes the total elapsed time. Additionally, calculate the idle time for Machines 1 and 2.
Solution:
M1 ------------->
+--------------------------------------------+
| | | | | | | | | |
+--------------------------------------------+
<------------- M2
Now We Create the Optimal Job Sequence
+--------------------------------------------+
| | | | | | | | | 7 |
+--------------------------------------------+
+--------------------------------------------+
| 2 | | | | | | | 8 | 7 |
+--------------------------------------------+
+--------------------------------------------+
| 2 | 1 | 9 | | | | | 8 | 7 |
+--------------------------------------------+
+--------------------------------------------+
S1 | 2 | 1 | 9 | 5 | | | | 8 | 7 |
+--------------------------------------------+
+--------------------------------------------+
S2 | 2 | 1 | 9 | | | | 5 | 8 | 7 |
+--------------------------------------------+
+--------------------------------------------+
S1 | 2 | 1 | 9 | 5 | 6 | | | 8 | 7 |
+--------------------------------------------+
+--------------------------------------------+
S2 | 2 | 1 | 9 | 6 | | | 5 | 8 | 7 |
+--------------------------------------------+
+--------------------------------------------+
S1 | 2 | 1 | 9 | 5 | 6 | 4 | 3 | 8 | 7 |
+--------------------------------------------+
+--------------------------------------------+
S2 | 2 | 1 | 9 | 6 | 4 | 3 | 5 | 8 | 7 |
+--------------------------------------------+
Computation of Total Elapsed Time and Idle Time for Machine 1 and Machine 2
Jobs | Machine 1 || Machine 2 | Idle Time for
| Time In | Duration | Time Out || Time In | Duration | Time Out | Machine 2
------+---------+----------+----------++---------+----------+----------+---------------
2 | 0 | 3 | 3 || 3 | 8 | 11 | 3
1 | 3 | 5 | 8 || 11 | 6 | 17 | -
9 | 8 | 5 | 13 || 17 | 7 | 24 | -
5 | 13 | 6 | 19 || 24 | 6 | 30 | -
6 | 19 | 10 | 29 || 30 | 12 | 42 | -
4 | 29 | 15 | 44 || 44 | 10 | 54 | 2
3 | 44 | 12 | 56 || 56 | 10 | 66 | 2
8 | 56 | 9 | 65 || 66 | 3 | 69 | -
7 | 65 | 11 | 76 || 76 | 1 | ★77★ | 7
---------------------------------------------------------------------------------------
14
The order is Machine 1 (M1) followed by Machine 2 (M2), meaning that after a job is processed on M1, it moves to M2:
Question: There are five jobs, each of which needs to be processed sequentially through three machines: A, B, and C. The processing order for each job is A → B → C. The processing times (in minutes) for the jobs on each machine are given below:
Job | A | B | C
----+----+----+----
1 | 6 | 8 | 14
2 | 16 | 10 | 18
3 | 14 | 2 | 10
4 | 10 | 4 | 12
5 | 8 | 6 | 20
Objective: Determine the following:
Step 1: Check the conditions
If either or both of the above conditions are satisfied, proceed to the next step. Otherwise, the algorithm fails.
Step 2: Introduce two fictitious (imaginary) machines M1 and M2.
Job | M1 | M2
| [A+B] | [B+C]
----+-------+------
1 | 14 | 22
2 | 26 | 28
3 | 16 | 12
4 | 14 | 16
5 | 14 | 26
+-----------------------+
Optimum Sequence | 4 | 1 | 5 | 2 | 3 |
+-----------------------+
Apply this optimal sequence to the original problem:
Computation of Minimum Elapsed Time
Jobs | Machine A || Machine B || Machine C |
| Time | D | Time || Time | D | Time || Time | D | Time |
| In | | Out || In | | Out || In | | Out |
------+------+----+------++------+----+------++------+----+------+
4 | 0 | 10 | 10 || 10 | 4 | 14 || 14 | 12 | 26 |
1 | 10 | 6 | 16 || 16 | 8 | 24 || 26 | 14 | 40 |
5 | 16 | 8 | 24 || 24 | 6 | 30 || 40 | 20 | 60 |
2 | 24 | 16 | 40 || 40 | 10 | 50 || 60 | 18 | 78 |
3 | 40 | 14 | 54 || 54 | 2 | 56 || 78 | 10 | ★88★ |
These types of problems can only be solved using graphical methods.
Question: Using the graphical method, determine the optimal sequence needed to process Job 1 and Job 2 on five machines (A, B, C, D, and E). For each machine, find the job which should be done first. Also, calculate the total time needed to complete both jobs.
Job 1
Sequence : A B C D E
Time (hrs) : 3 4 2 6 2
Job 2
Sequence : B C A D E
Time (hrs) : 5 4 3 2 6
Step 1: Plot the graph using the given information.
Step 2: Calculate the total elapsed time for Job 1 and Job 2 (including idle time).
Optimal Schedule
The optimal schedule is constructed by combining actual time and idle time into a timeline.
Job 1
IT = Idle Time
| 3 | 2 | 4 | 3 | 3 | 6 | 2 |
| A | IT | B | C | IT | D | E |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Job 2
| 5 | 4 | 3 | 2 | 6 | 2 |
| B | C | A | D | E | IT |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
The optimal schedule on various machines for Job 1 and Job 2:
Machine A: J1 then J2
Machine B: J2 then J1
Machine C: J2 then J1
Machine D: J2 then J1
Machine E: J2 then J1
Question:Four jobs 1, 2, 3 and 4 are to be processed on each of the five machines A, B, C, D and E in the order ABCDE. Find the toal minimum elapsed time if no passing of jobs is permitted. Also determine idle time for each machine
Machine →| A | B | C | D | E
Jobs ↓ | | | | |
---------------------------------------------
1 | 14 | 10 | 4 | 6 | 18
2 | 12 | 12 | 8 | 10 | 20
3 | 10 | 8 | 10 | 12 | 16
4 | 16 | 6 | 6 | 4 | 12
Job | Machine a | Machine b
| [A + B + C + D] | [B + C + D + E]
-------------------------------------------
1 | 34 | 38
2 | 42 | 50
3 | 40 | 46
4 | 32 | 28
+------------------+
| 1 | 3 | 2 | 4 |
+------------------+
Now we find the elapsed time and idle time for each machine
Jobs | Machine A || Machine B || Machine C || Machine D || Machine E |
| Time | D | Time || Time | D | Time || Time | D | Time || Time | D | Time || Time | D | Time |
| In | | Out || In | | Out || In | | Out || In | | Out || In | | Out |
------+------+----+------++------+----+------++------+----+------++------+----+------++------+----+------+
1 | 0 | 14 | 14 || 14 | 10 | 24 || 24 | 4 | 28 || 28 | 6 | 34 || 34 | 18 | 52 |
3 | 14 | 10 | 24 || 24 | 8 | 32 || 32 | 10 | 42 || 42 | 12 | 54 || 54 | 16 | 70 |
2 | 24 | 12 | 36 || 36 | 12 | 48 || 48 | 8 | 56 || 56 | 10 | 66 || 70 | 20 | 90 |
4 | 36 | 16 | 52 || 52 | 6 | 58 || 58 | 6 | 64 || 66 | 4 | 70 || 90 | 12 |★102★ |
Reference