The cardinality of a fuzzy set is a measure of the size or "total membership" of the set. It is calculated by summing the membership values of all elements in the fuzzy set.
Mathematical Definition
Let \( A \) be a fuzzy set defined on a universal set \( X \), with membership function \( \mu_A(x) \). The cardinality of \( A \), denoted as \( |A| \), is given by:
\[ |A| = \sum_{x \in X} \mu_A(x) \]
Consider a fuzzy set \( A \) representing "tall people" defined on the universal set \( X = \{x_1, x_2, x_3\} \), where:
\[ A = \{ (x_1, 0.6), (x_2, 0.8), (x_3, 0.4) \} \]
The membership values are:
Now, calculate the cardinality:
\[ |A| = 0.6 + 0.8 + 0.4 = 1.8 \]
Hence, the cardinality of the fuzzy set \( A \) is \( 1.8 \).
If fuzzy sets are given to us, for example, set A and set B, various operations can be performed on them. These operations help us manipulate and analyze fuzzy sets effectively.
Example:
A = {(x1, 0.6), (x2, 0.7), (x3, 0.4)}
B = {(x1, 0.3), (x2, 0.2), (x3, 0.5)}
\[ \mu_R(X, Y) = \begin{pmatrix} a & 0.2 & 0.5 \\ b & 0.5 & 0.6 \\ c & 0.4 & 0.4 \end{pmatrix} \]
Consider the two fuzzy sets:
A = {0.4/x1 + 0.3/x2 + 0.2/x3}
B = {0.3/y1 + 0.5/y2}
The Cartesian product of two fuzzy sets is calculated by finding the minimum value of the membership grades of their corresponding elements. For each pair (x, y), we compute:
μR(xi, yj) = min(μA(xi), μB(yj))
Let us calculate for all pairs:
1. μR(x1, y1) = min(0.4, 0.3) = 0.3
2. μR(x1, y2) = min(0.4, 0.5) = 0.4
3. μR(x2, y1) = min(0.3, 0.3) = 0.3
4. μR(x2, y2) = min(0.3, 0.5) = 0.3
5. μR(x3, y1) = min(0.2, 0.3) = 0.2
6. μR(x3, y2) = min(0.2, 0.5) = 0.2
Now, we can represent the Cartesian product in matrix form:
\[ \mu_R(X, Y) = \begin{pmatrix} & y_1 & y_2 \\ x_1 & 0.3 & 0.4 \\ x_2 & 0.3 & 0.3 \\ x_3 & 0.2 & 0.2 \end{pmatrix} \]
Here:
Previously, we learned about operations on fuzzy sets. Now, we explore operations between two fuzzy relations.
\[ \mu_R(X, Y) = \begin{pmatrix} & a & b \\ a & 0.2 & 0.2 \\ b & 0.5 & 0.6 \\ c & 0.4 & 0.4 \end{pmatrix} \]
\[ \mu_S(X, Y) = \begin{pmatrix} & a & b \\ a & 0.3 & 0.5 \\ b & 0.1 & 0.4 \\ c & 0.3 & 0.6 \end{pmatrix} \]
\[ \mu_{R \cup S}(X, Y) = \begin{pmatrix} & a & b \\ a & 0.3 & 0.5 \\ b & 0.5 & 0.6 \\ c & 0.4 & 0.6 \end{pmatrix} \]
\[ \mu_R(X, Y) = \begin{pmatrix} & a & b \\ a & 0.2 & 0.2 \\ b & 0.5 & 0.6 \\ c & 0.4 & 0.4 \end{pmatrix} \]
\[ \mu_S(X, Y) = \begin{pmatrix} & a & b \\ a & 0.3 & 0.5 \\ b & 0.1 & 0.4 \\ c & 0.3 & 0.6 \end{pmatrix} \]
\[ \mu_{R \cap S}(X, Y) = \begin{pmatrix} & a & b \\ a & 0.2 & 0.2 \\ b & 0.1 & 0.4 \\ c & 0.3 & 0.4 \end{pmatrix} \]
\[ \mu_R(X, Y) = \begin{pmatrix} & a & b \\ a & 0.2 & 0.2 \\ b & 0.5 & 0.6 \\ c & 0.4 & 0.4 \end{pmatrix} \]
\[ \mu_{R^c}(X, Y) = \begin{pmatrix} & a & b \\ a & 0.8 & 0.8 \\ b & 0.5 & 0.4 \\ c & 0.6 & 0.6 \end{pmatrix} \]
\(\mu_{R \circ S}(x, z) = \max_{y \in Y} \big(\min(\mu_R(x, y), \mu_S(y, z))\big)\)
\(\mu_{R \circ S}(x, z) = \max_{y \in Y} \big(\mu_R(x, y) \cdot \mu_S(y, z)\big)\)
Example Question: Fuzzy Max-Min Composition
\[ R_{x,y} = \begin{pmatrix} & y1 & y2 \\ x1 & 0.6 & 0.3 \\ x2 & 0.2 & 0.9 \end{pmatrix} \]
\[ S_{y,z} = \begin{pmatrix} & z1 & z2 & z3 \\ y1 & 1 & 0.5 & 0.3 \\ y2 & 0.8 & 0.4 & 0.7 \end{pmatrix} \]
\[ \mu_{R \circ S} = \begin{pmatrix} & z1 & z2 & z3 \\ x1 & ? & ? & ? \\ x2 & ? & ? & ? \end{pmatrix} \]
Now we will find each element of the resulting fuzzy relation using the formula for max-min composition:
\(\mu_{R \circ S}(x, z) = \max_{y \in Y} \big(\min(\mu_R(x, y), \mu_S(y, z))\big)\)
\(\mu_{R∘S}(x_1, z_1) = \max\big(\min(\mu_R(x_1, y_1), \mu_S(y_1, z_1)), \min(\mu_R(x_1, y_2), \mu_S(y_2, z_1))\big)\)
\[ \mu_{R \circ S} = \begin{pmatrix} & z1 & z2 & z3 \\ x1 & 0.6 & ? & ? \\ x2 & ? & ? & ? \end{pmatrix} \]
\(\mu_{R∘S}(x_1, z_2) = \max\big(\min(\mu_R(x_1, y_1), \mu_S(y_1, z_2)), \min(\mu_R(x_1, y_2), \mu_S(y_2, z_2))\big)\)
\[ \mu_{R \circ S} = \begin{pmatrix} & z1 & z2 & z3 \\ x1 & 0.6 & 0.5 & ? \\ x2 & ? & ? & ? \end{pmatrix} \]
\(\mu_{R∘S}(x_1, z_3) = \max\big(\min(\mu_R(x_1, y_1), \mu_S(y_1, z_3)), \min(\mu_R(x_1, y_2), \mu_S(y_2, z_3))\big)\)
\[ \mu_{R \circ S} = \begin{pmatrix} & z1 & z2 & z3 \\ x1 & 0.6 & 0.5 & 0.3 \\ x2 & ? & ? & ? \end{pmatrix} \]
\(\mu_{R∘S}(x_2, z_1) = \max\big(\min(\mu_R(x_2, y_1), \mu_S(y_1, z_1)), \min(\mu_R(x_2, y_2), \mu_S(y_2, z_1))\big)\)
\[ \mu_{R \circ S} = \begin{pmatrix} & z1 & z2 & z3 \\ x1 & 0.6 & 0.5 & 0.3 \\ x2 & 0.8 & ? & ? \end{pmatrix} \]
\(\mu_{R∘S}(x_2, z_2) = \max\big(\min(\mu_R(x_2, y_1), \mu_S(y_1, z_2)), \min(\mu_R(x_2, y_2), \mu_S(y_2, z_2))\big)\)
\[ \mu_{R \circ S} = \begin{pmatrix} & z1 & z2 & z3 \\ x1 & 0.6 & 0.5 & 0.3 \\ x2 & 0.8 & 0.4 & ? \end{pmatrix} \]
\(\mu_{R∘S}(x_2, z_3) = \max\big(\min(\mu_R(x_2, y_1), \mu_S(y_1, z_3)), \min(\mu_R(x_2, y_2), \mu_S(y_2, z_3))\big)\)
\[ \mu_{R \circ S} = \begin{pmatrix} & z1 & z2 & z3 \\ x1 & 0.6 & 0.5 & 0.3 \\ x2 & 0.8 & 0.4 & 0.7 \end{pmatrix} \]
Example Question: Max-Product Composition
\[ R_{x,y} = \begin{pmatrix} & y1 & y2 \\ x1 & 0.6 & 0.3 \\ x2 & 0.2 & 0.9 \end{pmatrix} \] \[ S_{y,z} = \begin{pmatrix} & z1 & z2 & z3 \\ y1 & 1 & 0.5 & 0.3 \\ y2 & 0.8 & 0.4 & 0.7 \end{pmatrix} \] \[ \mu_{R \circ S} = \begin{pmatrix} & z1 & z2 & z3 \\ x1 & ? & ? & ? \\ x2 & ? & ? & ? \end{pmatrix} \]
Now we will find each element of the resulting fuzzy relation using the formula for max-product composition:
\(\mu_{R \circ S}(x, z) = \max_{y \in Y} \big(\mu_R(x, y) \cdot \mu_S(y, z)\big)\)
\(\mu_{R∘S}(x_1, z_1) = \max\big((\mu_R(x_1, y_1) \cdot \mu_S(y_1, z_1)), (\mu_R(x_1, y_2) \cdot \mu_S(y_2, z_1))\big)\)
\[ \mu_{R \circ S} = \begin{pmatrix} & z1 & z2 & z3 \\ x1 & 0.6 & ? & ? \\ x2 & ? & ? & ? \end{pmatrix} \]
\(\mu_{R∘S}(x_1, z_2) = \max\big((\mu_R(x_1, y_1) \cdot \mu_S(y_1, z_2)), (\mu_R(x_1, y_2) \cdot \mu_S(y_2, z_2))\big)\)
\[ \mu_{R \circ S} = \begin{pmatrix} & z1 & z2 & z3 \\ x1 & 0.6 & 0.3 & ? \\ x2 & ? & ? & ? \end{pmatrix} \]
\(\mu_{R∘S}(x_1, z_3) = \max\big((\mu_R(x_1, y_1) \cdot \mu_S(y_1, z_3)), (\mu_R(x_1, y_2) \cdot \mu_S(y_2, z_3))\big)\)
\[ \mu_{R \circ S} = \begin{pmatrix} & z1 & z2 & z3 \\ x1 & 0.6 & 0.3 & 0.21 \\ x2 & ? & ? & ? \end{pmatrix} \]
\(\mu_{R∘S}(x_2, z_1) = \max\big((\mu_R(x_2, y_1) \cdot \mu_S(y_1, z_1)), (\mu_R(x_2, y_2) \cdot \mu_S(y_2, z_1))\big)\)
\[ \mu_{R \circ S} = \begin{pmatrix} & z1 & z2 & z3 \\ x1 & 0.6 & 0.3 & 0.21 \\ x2 & 0.72 & ? & ? \end{pmatrix} \]
\(\mu_{R∘S}(x_2, z_2) = \max\big((\mu_R(x_2, y_1) \cdot \mu_S(y_1, z_2)), (\mu_R(x_2, y_2)
\cdot \mu_S(y_2, z_2))\big)\)
\[ \mu_{R \circ S} = \begin{pmatrix} & z1 & z2 & z3 \\ x1 & 0.6 & 0.3 & 0.21 \\ x2 & 0.72 & 0.36 & ? \end{pmatrix} \]
\(\mu_{R∘S}(x_2, z_3) = \max\big((\mu_R(x_2, y_1) \cdot \mu_S(y_1, z_3)), (\mu_R(x_2, y_2) \cdot \mu_S(y_2, z_3))\big)\)
\[ \mu_{R \circ S} = \begin{pmatrix} & z1 & z2 & z3 \\ x1 & 0.6 & 0.3 & 0.21 \\ x2 & 0.72 & 0.36 & 0.63 \end{pmatrix} \]
Reference